- Oggetto:
- Oggetto:
Impresa e innovazione
- Oggetto:
The innovative firm
- Oggetto:
Anno accademico 2021/2022
- Codice dell'attività didattica
- ECM0146
- Docenti
- Prof. Francesco Quatraro (Titolare del corso)
Consuelo Rubina Nava (Titolare del corso) - Corso di studi
- Laurea in Economia e Statistica per le Organizzazioni - a Torino [0402L31]
- Anno
- 3° anno
- Periodo didattico
- Primo semestre
- Tipologia
- Caratterizzante
- Crediti/Valenza
- 12
- SSD dell'attività didattica
- SECS-P/02 - politica economica
SECS-P/06 - economia applicata - Modalità di erogazione
- A distanza
- Lingua di insegnamento
- Italiano
- Modalità di frequenza
- Consigliata/Recommended
- Tipologia d'esame
- Scritto ed orale
- Prerequisiti
-
MODULO ENTREPRENEURSHIP (APPLIED ECONOMETRICS)
Lo studente deve aver superato gli esami relativi agli insegnamenti di “Teoria statistica per le Decisioni” (secondo anno, primo semestre) e “Metodi quantitativi per l'economia” (secondo anno, secondo semestre) presenti nell’offerta formativa del Corso di Laurea in Economia e Statistica per le Organizzazioni (CLEST). In particolare, si richiede allo studente di ripassare, ripercorrendo gli insegnamenti sopra indicati, quanto segue:
• la definizione di stimatore e le sue proprietà finite e asintotiche;
• la costruzione di intervalli di confidenza;
• la verifica di test d’ipotesi;
• i fondamenti del calcolo matriciale;
• i fondamenti della programmazione in R (verrà in ogni caso resa disponibile dal docente una dispensa sull’uso delle funzioni base di R);
• le assunzioni del modello di regressione lineare OLS e la sua interpretazione geometrica;
• le violazioni del modello OLS e le possibili soluzioni a tali violazioni (ad esempio, l’uso di variabili strumentali, GLS, ecc.).The student must have passed the exams relating to the courses of "Statistical Theory for Decisions" (second year, first semester) and "Quantitative methods for economics" (second year, second semester) present in the educational offer in Economics and Statistics for Organizations (CLEST). In particular, the student is asked to review, retracing the teachings indicated above, the following:
• the definition of estimator and its finite and asymptotic properties;
• the construction of confidence intervals;
• the verification of hypothesis tests;
• the fundamentals of matrix calculation;
• the fundamentals of programming in R (in any case, a handout on the use of the basic functions of R will be made available by the teacher);
• the assumptions of the OLS linear regression model and its geometric interpretation;
• violations of the OLS model and possible solutions to such violations (for example, the use of instrumental variables, GLS, etc.). - Propedeutico a
-
- Oggetto:
Sommario insegnamento
- Oggetto:
Obiettivi formativi
MODULO ECONOMIA DELL'INNOVAZIONE
Fornire gli elementi necessari alla comprensione dei processi di innovaizone a livello micro, meso e macro. Fornire una conoscenza dettagliata dei meccanismi sottostanti ai processi di innovazione in una serie di industrie.MODULO ENTREPRENEURSHIP (APPLIED ECONOMETRICS)
L’insegnamento di “Entrepreneurship (Applied Econometrics)” si inserisce nella seconda fase del percorso formativo dell’indirizzo di economia (applicata) offerto dal Corso di Laurea in Economia e Statistica per le Organizzazioni ed è volto a proporre un avanzamento teorico ed empirico rispetto ai fondamenti proposti nell’insegnamento di “Metodi quantitativi per l'economia” (Econometria).
L’insegnamento di “Entrepreneurship (Applied Econometrics)” si propone, pertanto, di:
- sviluppare la conoscenza di tecniche econometriche (classiche e non solo) volte a descrivere, interpretare e prevedere fenomeni economici di natura micro e macroeconomica;
- approfondire l’utilizzo empirico di tecniche econometriche attraverso lo studio di dati reali di natura economico-finanziaria;
- sviluppare, partendo da problemi identificati a priori, la capacità di svolgere una opportuna analisi econometrica a livello micro o macroeconomico;
- sviluppare la capacità di elaborare, sulla base dei dati raccolti/disponibili e della loro analisi, delle opportune considerazioni (ad esempio utili per i decisori politici o gli stakeholders) e di saperle comunicare con un lessico tecnico appropriato.
MODULO ECONOMICS OF INNOVATION
To Provide the tools to analyse innovative processes at the micro, meso and macro level. To provide a detailed knowledge of innovative processes in a set of industriesMODULO ENTREPRENEURSHIP (APPLIED ECONOMETRICS)
The "Entrepreneurship (Applied Econometrics)" course is part of the second phase of the training course of the (applied) economics course offered by the CLEST and is aimed at proposing a theoretical and empirical advancement with respect the foundations proposed in the teaching of "Quantitative methods for economics" (Econometrics).
The teaching of "Entrepreneurship (Applied Econometrics)" therefore aims to:
- develop the knowledge of econometric techniques (classical and not only) aimed at describing, interpreting and predicting economic phenomena of a micro and macroeconomic nature;
- deepen the empirical use of econometric techniques through the study of real economic-financial data;
- develop, starting from problems identified a priori, the ability to carry out an appropriate econometric analysis at a micro or macroeconomic level;
- develop the ability to elaborate, on the basis of the collected / available data and their analysis, appropriate considerations (for example useful for political decision makers or stakeholders) and to know how to communicate them with an appropriate technical lexicon.
- Oggetto:
Risultati dell'apprendimento attesi
MODULO ECONOMIA DELL'INNOVAZIONE
La conoscenza dei diversi approcci elaborati dalla teoria economica per studiare l'attività innovativa come un processo endogeno al sistema economico e capacità di stabilire connessione tra di essi.
MODULO ENTREPRENEURSHIP (APPLIED ECONOMETRICS)
Al termine dell’insegnamento, e sulla base degli obiettivi formativi, lo studente dovrà:
- conoscere gli aspetti teorici e applicativi dell’econometria;
- essere in grado di decidere in modo autonomo quali analisi econometriche effettuare per descrivere sinteticamente e al meglio le caratteristiche del campione preso in esame;
- essere in grado di leggere, interpretare e valutare in modo critico i risultati di analisi econometriche;
- essere in grado di divulgare i risultati delle analisi econometriche, dimostrando di padroneggiare un lessico tecnico appropriato e di saper redigere documenti di sintesi.
MODULO ECONOMICS OF INNOVATION
The command of the different approaches articulated in economics to analyzed tecnoligical change as an endogeneus process and ability to elaborate connections and interdependences among them.MODULO ENTREPRENEURSHIP (APPLIED ECONOMETRICS)
At the end of the course, and on the basis of the educational objectives, the student must:
- know the theoretical and applicative aspects of econometrics;
- be able to autonomously decide which econometric analyzes to perform in order to briefly and best describe the characteristics of the sample examined;
- be able to read, interpret and critically evaluate the results of econometric analyzes;
- be able to disseminate the results of econometric analyzes, demonstrating that they have mastered an appropriate technical vocabulary and are able to draft summary documents.
- Oggetto:
Modalità di insegnamento
La modalità di insegnamento è in presenza (con diretta streaminig), per un totale di 72 ore di lezioni frontali: 36 ore MODULO ECONOMIA DELL'INNOVAZIONE, 36 ore MODULO ENTREPRENEURSHIP (APPLIED ECONOMETRICS). Nel corso di tali lezioni è prevista la realizzazione e la discussione di applicazioni empiriche, usando il software R.
Le lezioni della Prof.ssa Nava si terranno a partire dal 2 novembre 2021 il lunedì e il martedì 09-12 (Aula C1 - Campus Luigi Einaudi - Lungo Dora Siena - 100 - Torino) in presenza con contemporanea registrazione della lezione in streaming.
Per seguire le lezioni online accedere alla virtual room utilizzando il seguente link: https://unito.webex.com/meet/francesco.quatraro e https://unito.webex.com/meet/consuelorubina.nava
Tutte le videolezioni saranno successivamente disponibili sulla pagina Moodle dell'insegnamento.
In relazione alla situazione sanitaria, eventuali turnazioni degli studenti in presenza saranno segnalate ad opera dell'Ateneo. Si consiglia di consultare frequentemente le pagine del sito riportanti le regole di accesso (distanziamento, uso di disinfettanti, mascherine, ecc.)
Le lezioni sono erogate in presenza, utilizzando le aule fino alla loro capienza massima. E' anche possibile seguire le lezioni in diretta streaming collegandosi alla pagina webex: https://unito.webex.com/meet/francesco.quatraro e https://unito.webex.com/meet/consuelorubina.nava. L'accesso degli studenti alle lezioni in presenza può avvenire esclusivamente attraverso il possesso del green pass e la prenotazione obbligatoria del posto in aula tramite il software Student booking.
The teaching method is face-to-face (with direct streaminig), for a total of 72 hours of frontal lessons: 36 hours MODULO ECONOMIA DELL'INNOVAZIONE, 36 hours MODULO ENTREPRENEURSHIP (APPLIED ECONOMETRICS). During these lessons it is foreseen the realization and discussion of empirical applications, using the software R.
The lessons of Prof.ssa Nava will be held starting from November 2, 2021 on Monday and Tuesday 09-12 (Room C1 - Campus Luigi Einaudi - Lungo Dora Siena - 100 - Turin) in presence with simultaneous registration of the lesson in streaming.
To follow the lessons online, access the virtual room using the following link: https://unito.webex.com/meet/francesco.quatraro and https://unito.webex.com/meet/consuelorubina.nava
All videolessons will subsequently be available on the Moodle page of the course.
In relation to the health situation, any student shifts in attendance will be reported by the University. It is advisable to frequently consult the pages of the site showing the access rules (distance, use of disinfectants, masks, etc.)
Lessons are given face to face, using the classrooms up to their maximum capacity. It is also possible to follow the lessons in live streaming by connecting to the webex page: https://unito.webex.com/meet/francesco.quatraro and https://unito.webex.com/meet/consuelorubina.nava. Student access to face-to-face lessons can only be done through possession of the green pass and compulsory seat reservation in the classroom using the Student booking software.
- Oggetto:
Modalità di verifica dell'apprendimento
MODULO ECONOMIA DELL'INNOVAZIONE
Prova SCRITTA (domande a risposta multipla e/o domande aperte) e prova ORALE. Entrambe online.MODULO ENTREPRENEURSHIP (APPLIED ECONOMETRICS)
La modalità di verifica dell’apprendimento è scritta e consta di tre parti:
- parte 1: la realizzazione di un lavoro di gruppo (max. 5 studenti per gruppo) relativo a una applicazione econometrica per lo studio di dati reali. In particolare, si richiede di:
- definire una opportuna domanda di ricerca di natura economica;
- raccogliere i dati necessari;
- selezionare e applicare in R opportune tecniche econometriche per rispondere alla domanda di ricerca;
- effettuare un commento critico conclusivo circa la presentazione dei risultati ottenuti;
- riportare quanto descritto nei punti precedenti in un report scritto, corredato anche dai dati raccolti e i codici R utilizzati.
La consegna dell’elaborato deve avvenire almeno 10 giorni lavorativi prima della data dell’appello, pena la non partecipazione alle fasi successivi di accertamento dell’apprendimento. La parte 1 avrà l’assegnazione di un punteggio massimo di 10 punti (1/3 del voto complessivo);
- parte 2: 10 domande a risposta multipla sui concetti di base teorici ed empirici affrontati durante il corso, eventualmente partendo da un output di R. La parte 2 assegna 1 punto a ogni domanda corretta, -0.5 punti a ogni domanda errata e 0 punti a ogni domanda priva di risposta. Pertanto, il punteggio massimo conseguibile nella parte 2 sarà pari a 10 punti (1/3 del voto complessivo). L’accesso all’ultimo step di verifica (la parte 3) è vincolato al raggiungimento di un punteggio minimo di 7 punti nella parte 2. La prova dello studente che non raggiunga questo punteggio verrà considerata insufficiente ma negli appelli successivi non sarà necessario effettuare un nuovo lavoro di gruppo in quanto farà fede quanto inviato con riferimento alla parte 1;
- parte 3: due domande aperte, una teorica e una empirica partendo dal commento a un output di R. Tali domande avranno un punteggio massimo di 5 punti l’una. Pertanto, il punteggio massimo conseguibile nella parte 3 sarà pari a 10 punti (1/3 del voto complessivo).
La valutazione finale sarà il frutto della somma dei punteggi conseguiti nelle tre fasi di valutazione sopra elencati. La parte 3 si svolgerà subito dopo la realizzazione e la correzione da parte del docente della parte 2.
Per motivi organizzativi, gli studenti prenotati all'esame che non intendono sostenere la prova in quell'appello sono caldamente invitati a cancellare la propria iscrizione almeno 3 giorni prima dell'esame.
MODULO ECONOMICS OF INNOVATION
Written exam with MCQ and open questions and oral exam, both done online.MODULO ENTREPRENEURSHIP (APPLIED ECONOMETRICS)
The learning verification method is written and consists of three parts:
- part 1: the realization of a group work (max. 5 students per group) related to an econometric application for the study of real data. In particular, it is required to:
- define an appropriate research question of an economic nature;
- collect the necessary data;
- select and apply in R suitable econometric techniques to answer the research question;
- make a final critical comment about the presentation of the results obtained;
- report what is described in the previous points in a written report, also accompanied by the data collected and the R codes used.
The delivery of the paper must take place at least 10 working days before the date of the exam, under penalty of non-participation in the subsequent stages of assessment of learning. Part 1 will be awarded a maximum score of 10 points (1/3 of the overall grade);
- part 2: 10 multiple choice questions on the theoretical and empirical basic concepts addressed during the course, possibly starting from an output of R. Part 2 assigns 1 point to each correct question, -0.5 points to each incorrect question and 0 points to every unanswered question. Therefore, the maximum score achievable in part 2 will be 10 points (1/3 of the overall grade). Access to the last verification step (part 3) is subject to the achievement of a minimum score of 7 points in part 2. The test of the student who does not reach this score will be considered insufficient but in subsequent sessions it will not be necessary to perform a new group work as the information sent with reference to part 1 will be valid;
- part 3: two open questions, one theoretical and one empirical starting from the comment to an output of R. These questions will have a maximum score of 5 points each. Therefore, the maximum score achievable in part 3 will be 10 points (1/3 of the overall grade).
The final evaluation will be the result of the sum of the scores achieved in the three evaluation phases listed above. Part 3 will take place immediately after the realization and correction of part 2 by the teacher.
For organizational reasons, students booked for the exam who do not intend to take the test in that session are strongly advised to cancel their registration at least 3 days before the exam.
- parte 1: la realizzazione di un lavoro di gruppo (max. 5 studenti per gruppo) relativo a una applicazione econometrica per lo studio di dati reali. In particolare, si richiede di:
- Oggetto:
Attività di supporto
- Oggetto:
Programma
MODULO ECONOMIA DELL'INNOVAZIONE
Il corso ha come obiettivo quello di sviluppare una comprensione approfondita dei processi economici sottostanti allo sviluppo dell’innovazione e conseguente crescita economica. Dopo una breve introduzione ai concetti rilevanti per la comprensione dei processi innovativi e di crescita, il corso analizza i principali modelli economici per l’analisi dell’innovazione sia a livello microeconomico (a livello d’impresa) che a livello industriale.
Il corso è strutturato in tre moduli principali. Nel primo sarà presentata una breve introduzione all’economia dell’innovazione con una breve discussione dei principali contributi alla disciplina. Il secondo modulo tratta del processo d’innovazione a livello d’impresa; verrà analizzata l’innovazione nelle grandi imprese (analisi delle spese in ricerca e sviluppo) e nelle piccole e medie imprese (innovazione di prodotto e di processo realizzata, il più delle volte, in maniera incrementale). Verranno inoltre discussi i diritti di proprietà (come brevetti e diritti d’autore) ed il loro utilizzo come strumenti di protezione ed incentivazione all’innovazione. Nel terzo modulo verranno discussi i processi di innovazione in una serie di industrie sia tradizionali come l’industria dell’automobile che hightech come la farmaceutica e le industrie biotech.
MODULO ENTREPRENEURSHIP (APPLIED ECONOMETRICS)
- Modelli di regressione multipla: ripasso, verifica delle ipotesi, esempi di violazioni
- Applicazioni con R
- Variabili binarie dipendenti: modello logit and probit
- Teoria
- Esempi
- Applicazioni con R
- Dati Panel
- Teoria
- Esempi
- Applicazioni con R
- Survival model
- Teoria
- Esempi
- Applicazioni con R
Il programma è il medesimo per tutti gli studenti indipendentemente da fatto che riescano ad assistere alla totalità o maggior parte delle lezioni.
MOODLE link: https://elearning.unito.it/scuolacle/enrol/index.php?id=2557
MODULO ECONOMICS OF INNOVATION
The course aims to develop an understanding of the underlying economic processes leading to innovation and economic growth. After a brief introduction to the concepts relevant to the understanding of innovation processes and growth, the course analyzes the main economic models for the analysis of innovation both at the micro level (at company level) and at the industrial level. It then moves to consider how technological change has become the fundamental engine of economic growth. The course is structured into three main modules. The first will be presented a brief introduction to the economy of innovation with a brief discussion of the main contributions to the discipline. The second module studies the innovation process at enterprise level; it will be analyzed innovation in large companies (analysis of R&D expenditures) and in small and medium-sized enterprises (product and process innovation realized, most of the time, incrementally). Property rights will also be discussed (such as patents and copyrights) and their use as a means of protection and incentives to innovation. In the third module we will discuss the processes of innovation in a number of traditional industries, such as the automotive industry, and in high-tech industires as pharmaceuticals and biotech.
MODULO ENTREPRENEURSHIP (APPLIED ECONOMETRICS)
- Multiple regression models: review, hypothesis testing, examples of violations
- Applications with R
- Binary dependent variables: logit and probit model
- Theory
- Examples
- Applications with R
- Panel data
- Theory
- Examples
- Applications with R
- Survival model
- Theory
- Examples
- Applications with R
The program is the same for all students regardless of whether they are able to attend all or most of the lessons.
MOODLE link: https://elearning.unito.it/scuolacle/enrol/index.php?id=2557
- Modelli di regressione multipla: ripasso, verifica delle ipotesi, esempi di violazioni
Testi consigliati e bibliografia
- Oggetto:
- Altro
- Titolo:
- Materiale fornito dal docente
- Obbligatorio:
- Si
- Oggetto:
MODULO ENTREPRENEURSHIP (APPLIED ECONOMETRICS)
- Materiale fornito del docente (dispense, slides e codici in R).
- Train, K. E. (2009). Discrete choice methods with simulation. Cambridge university press.
- Kleiber and Z. Achim, Applied econometrics with R, Springer Science & Business Media, 2008.
- J. Faraway, Practical regression and ANOVA using R, Bath, University of Bath, 2002.
- H. Stock, M. W. Watson, Introduzione all’econometria, Milano, Pearson Education Italia, 2012.
MODULO ENTREPRENEURSHIP (APPLIED ECONOMETRICS)
- Material provided by the teacher (handouts, slides and codes in R).
- Train, K. E. (2009). Discrete choice methods with simulation. Cambridge university press.
- Kleiber and Z. Achim, Applied econometrics with R, Springer Science & Business Media, 2008.
- J. Faraway, Practical regression and ANOVA using R, Bath, University of Bath, 2002.
- H. Stock, M. W. Watson, Introduction to econometrics, Pearson Education, 2012.
- Oggetto:
Note
DSA e DISABILITA'
Gli studenti DSA o con disabilità sono invitati a contattare tempestivamente l'ufficio "Studenti con disabilità" ufficio.disabili@unito.it per essere appropriatamente presi in carico, qualora non l'abbiano già fatto. Successivamente sono invitata a contattare il docente, mettendo sempre il cc nelle comunicazioni l'ufficio "Studenti con disabilità".
Per la tutela della privacy, si invitano gli studenti DSA e con disabilità a NON inviare per nessun motivo al docente i certificati medici attestanti la disabilità.
Gli studenti DSA e con disabilità possono fare richiesta per sostenere gli esami con il supporto degli strumenti compensativi e/o delle misure dispensative consultando la seguente pagina Studenti DSA e con variabilità e compilando il Modulo.
Le richieste di strumenti compensativi e/o delle misure dispensative per l'esame devono pervenire al docente non oltre 30 giorni dalla data dell'appello.
CONTATTI CON IL DOCENTE
I docenti rispondono alle e-mail di studenti solo se provengono da indirizzo di posta UniTo. I docenti non rispondono a e-mail non firmate e/o che chiedono informazioni già pubblicate sul sito di dipartimento, sulla scheda e/o sulla pagina Moodle dell'insegnamento.
RICEVIMENTO
Il ricevimento della Prof.ssa Nava sarà erogato online nella sua pagine webex (https://unito.webex.com/meet/consuelo.nava) su prenotazione mercoledì dalle ore 12:15 alle ore 13:15.
EMERGENZA SANITARIA
In relazione all’evolvere della situazione sanitaria, sulla base delle indicazioni di Ateneo, le modalità dell’esame nonché dell’erogazione della didattica potranno subire variazioni.
Students with (learning) disabilities are invited to promptly contact the "Students with disabilities" office ufficio.disabili@unito.it to be properly taken care of. Subsequently they are invited to contact the teachers, always including in the communications the "Students with disabilities" office.
For the privacy protection, students with (learning) disabilities are invited NOT to send medical documents certifying disability to the teachers for any reason.
Students with (learning) disabilities can apply to take exams with the support of compensatory tools and / or dispensatory measures by consulting the following page: Students with (learning) disabilities and filling this form.
Requests for compensatory instruments and / or dispensatory measures for the exam must reach the teachers no later than 30 days from the date of the exam.
CONTACT WITH THE TEACHER
The teachers reply to e-mails from students only if they come from UniTo mailing addresses. The teachers do not respond to unsigned e-mails and / or requesting information already published on the department website, on the course sheet and / or on the Moodle page.
OFFICE HOUR
The office hour of Prof.ssa Nava will be provided online on her webex page (https://unito.webex.com/meet/consuelorubina.nava) by reservation on Wednesday from 12:15 to 13:15.
SANITARY EMERGENCY
In relation to the evolution of the health situation, based on the indications of the University, the methods of the examination as well as the provision of teaching may vary.
- Oggetto:
Moduli didattici
- Economia dell'innovazione (ECM0146A)
- Entrepreneurship (Applied Econometrics) (ECM0146B)
- Oggetto:
Altre informazioni
http://www.didattica-est.unito.it/do/home.pl/View?doc=home_appelli.html- Oggetto: