Vai al contenuto principale
Coronavirus: aggiornamenti per la comunità universitaria / Coronavirus: updates for UniTo Community
Oggetto:
Oggetto:

Data Mining e Analisi Multivariata 1

Oggetto:

Data Mining and Multivariate Analysis 1

Oggetto:

Anno accademico 2017/2018

Codice dell'attività didattica
ECM0028
Docenti
Cinzia Carota (Titolare del corso)
Consuelo Rubina Nava (Titolare del corso)
Insegnamento integrato
Corso di studi
Laurea in Economia e Statistica per le Organizzazioni - a Torino [0402L31]
Anno
3° anno
Tipologia
Caratterizzante
Crediti/Valenza
6
SSD dell'attività didattica
SECS-S/01 - statistica
Modalità di erogazione
Tradizionale
Lingua di insegnamento
Italiano
Modalità di frequenza
Fortemente consigliata/Recommended
Tipologia d'esame
Scritto
Prerequisiti

Buona conoscenza degli elementi di base di:
- analisi dei dati e probabilità
- teoria statistica delle decisioni
- modelli di regressione lineare


Good knowledge of basic elements of:
- data analysis and probability
- inferential statistics
- linear regression model

Oggetto:

Sommario insegnamento

Oggetto:

Obiettivi formativi

Il corso  è finalizzato a fornire agli studenti strumenti avanzati di analisi dei dati, attraverso cui estrapolare informazioni rilevanti da grandi dataset e guidare i collegati processi decisionali.

Obiettivi precipui del corso sono:

1. introdurre le tecniche di base dell'Analisi Multivariata;

2. sviluppare la capacità di scegliere il modello ottimale per analizzare i dati;

3. discutere lo studio di alcune applicazioni reali.

The course is addressed to give advanced data analysis instruments to extract relevant information from big dataset and to guide decision processes.

Specific course objectives are:

1. the introduction of main  Multivariate Analysis;

2. the development of the capacity to select the optimal model for data analysis;

3. the discussion of selected case studies.

 

Oggetto:

Risultati dell'apprendimento attesi

Al termine del corso lo studente avrà:

Conoscenza della terminologia scientifica e comprensione degli aspetti teorici e applicativi presentati nel corso delle lezioni, contenuti nel libro di testo e nei materiali del corso.

Capacità di applicare conoscenza e comprensione degli strumenti statistici e computazionali per l'Analisi Multivariata.

Autonomia di giudizio e conseguente possibilità di sviluppare considerazioni logiche e deduttive indispensabili per lavorare autonomamente nella ricerca, nella selezione e nello studio di dati con il supporto di strumenti di Analisi Multivariata.

Abilità comunicative per divulgare in forma scritta e orale i risultati delle analisi condotte utilizzando metodi efficaci e lessico appropriato.

 

At the end of the course students will have:

Knowledge of scientific terminology and understanding of the theoretical and applied aspects presented in the lectures, in the textbook and in the course material.

Ability to apply knowledge and understanding of statistical and computational tools for  Multivariate Analysis

Critical thinking and ability to work independently  in the research, the selection and the study of data with the support of the Multivariate Analysis tools.

Communicative abilities to clearly describe and interprete results. 

Oggetto:

Modalità di insegnamento

 Lezioni frontali

Frontal Lectures

Oggetto:

Modalità di verifica dell'apprendimento

La verifica dell'apprendimento avviene mediante un esame scritto in cui lo studente è chiamato a rispondere ad alcuni quesiti a risposta multipla, a commentare l'analisi di  casi proposti dal docente e a rispondere ad alcune domande teoriche circa gli strumenti utilizzati. In questo modo si verificano:

-la conoscenza estensiva del programma del corso;

-la  capacità di interpretare l'applicazione proposta;

-la capacità di comunicare sinteticamente, in forma scritta,  la natura e le proprietà degli strumenti utilizzati. 

The final exam consists of  a written test including a series of multiple choice questions, the comment to the analysis of one or more selected cases and  theoretical questions about the applied statistical tools. This  is the way we  simultaneously check the student's ability to provide a  clear interpretation and comunication, in a written form, of the  theoretical tools underlying the proposed solution.  The objective of multiple choice questions is to evaluate the extent to which a student has covered all fundamental topics. 

Oggetto:

Programma

1. Introduzione all'Analisi Multivariata

2. Modelli statistici per l'analisi Multivariata

2.1. Modelli lineari (cenni ai modelli ANOVA)

2.2. Modelli log-lineari

2.3. Modelli grafici

3. DA QUI IN POI INTERVIENE NAVA

4. Casi studio

1. Introduction to Multivariate Analysis

2. Statistical models for Multivariate Analysis

2.1. Linear model (ANOVA models, basic elements)

2.2. Log-linear models

2.3. Graphical Models

2.4. Graphical models

3. DA QUI IN POI NAVA

4. Cases studies

Testi consigliati e bibliografia

Oggetto:

Data Mining: metodi informatici, statistici e applicazioni
Autore: Paolo Giudici
Edizione: seconda
Casa editrice: McGraw-Hill
ISBN: 9788838672125

Data Mining: metodi informatici, statistici e applicazioni
Autor: Paolo Giudici
Edition: seconda
Edit by: McGraw-Hill
ISBN: 9788838672125



Oggetto:

Note

Orario Lezioni

Oggetto:

Altre informazioni

http://www.didattica-est.unito.it/do/home.pl/View?doc=home_appelli.html
Oggetto:
Ultimo aggiornamento: 13/03/2018 11:35
Location: https://www.didattica-est.unito.it/robots.html
Non cliccare qui!