Vai al contenuto principale
Oggetto:
Oggetto:

Analisi multivariata

Oggetto:

Multivariate analysis

Oggetto:

Anno accademico 2024/2025

Codice attività didattica
ECM0196A
Docente
Natalia Golini (Titolare del corso)
Corso di studio
Laurea in Economia e Statistica per le Organizzazioni - a Torino [0402L31]
Anno
3° anno
Periodo
Primo semestre
Tipologia
Caratterizzante
Crediti/Valenza
6
SSD attività didattica
SECS-S/01 - statistica
Erogazione
Tradizionale
Lingua
Italiano
Frequenza
Fortemente consigliata/Recommended
Tipologia esame
Scritto ed orale
Tipologia unità didattica
modulo
Insegnamento integrato
Data mining e Analisi multivariata (ECM0196)
Prerequisiti

Buona conoscenza degli elementi di base di:
- analisi dei dati e probabilità;
- teoria statistica delle decisioni;
- analisi del modello di regressione lineare;
- linguaggio R.


Good knowledge of basic elements of:
- data analysis and probability;
- inferential statistics;
- linear regression model;
- R language.

Oggetto:

Sommario insegnamento

Oggetto:

Obiettivi formativi

L'insegnamento di Data Mining e Analisi Multivariata è finalizzato a fornire agli studenti e alle studentesse strumenti avanzati di analisi dei dati, attraverso cui estrapolare informazioni rilevanti da grandi dataset e guidare i collegati processi decisionali.

Obiettivi specifici dell'insegnamento sono:

  • introdurre le tecniche di base del Data Mining e dell'Analisi Multivariata;
  • sviluppare la capacità di scegliere il modello ottimale per analizzare i dati;
  • discutere lo studio di alcune applicazioni reali.

The Data Mining and Multivariate Analysis course is addressed to give advanced data analysis instruments to extract relevant information from big dataset and to guide decision processes.

Specific course objectives are:

  • the introduction of main Data Mining and Multivariate Analysis techniques;
  • the development of the capacity to select the optimal model for data analysis;
  • the discussion of selected case studies.

 

Oggetto:

Risultati dell'apprendimento attesi

Al termine dell'insegnamento lo/a studente/ssa avrà:

  • conoscenza della terminologia scientifica e comprensione degli aspetti teorici e applicativi presentati durante le lezioni, contenuti nel libro di testo e nei materiali dell'insegnamento;
  • conoscenza e capicità di comprensione applicata degli strumenti statistici e computazionali per il Data Mining e la Statistica Multivariata;
  • autonomia di giudizio e conseguente possibilità di sviluppare considerazioni logiche e deduttive indispensabili per lavorare autonomamente nella ricerca, nella selezione e nello studio di dati con il supporto di strumenti di di Data Mining e Analisi Multivariata;
  • abilità comunicative per divulgare in forma scritta e orale i risultati delle analisi condotte utilizzando metodi efficaci e lessico appropriato.

 

At the end of the course students will have:

  • knowledge of scientific terminology and understanding of the theoretical and applied aspects presented in the lectures, in the textbook and in the course material;
  • ability to apply knowledge and understanding of statistical and computational tools forData Mining and Multivariate Analysis;
  • critical thinking and ability to work independently in the research, the selection and the study of data with the support of the Data Mining and Multivariate Analysis tools;
  • communicative abilities to clearly describe and interprete results. 

 

Oggetto:

Programma

  • Introduzione all'insegnamento.
  • Data Mining vs Analisi Multivariata.
  • Cenni di Market Basket Analysis.
  • Elementi di algebra lineare.
  • Matrice dei dati; matrice di covarianza; matrice di correlazione; le trasformazioni dei dati multidimensionali.
  • Analisi delle Componenti Principali.
  • Analisi delle Corrispondenze. 

  • Introduction to the Course.
  • Data Mining vs Multivariate Analysis.
  • Notes on Market Basket Analysis.
  • Elements of linear algebra.
  • Data, covariance, and correlation matrix; transformations of multidimensional data.
  • Principal Component Analysis. 
  • Correspondence Analysis.

Oggetto:

Modalità di insegnamento

L’insegnamento è strutturato in 40 ore di didattica (6 CFU), suddivise in lezioni da 2 ore in base al calendario accademico. La didattica, che si costituisce di lezioni teoriche e pratiche (con utilizzo del software R), è erogata in presenza. 

I materiali dell’insegnamento saranno fruibili sulla pagina Moodle dell'insegnamento.

 

The course consists of 40 hours (6 CFU) of teaching, divided into classes of 2 hours according to the academic calendar. The teaching consists of theoretical and practical lessons (with R) and will be held in presence.

All the teaching materials will be available on the Moodle page.

Oggetto:

Modalità di verifica dell'apprendimento

La verifica dell'apprendimento sarà volta a verificare:

  • la conoscenza estensiva del programma dell'insegnamento di entrambi i moduli del corso di Data Mining e Analisi Multivariata;
  • la capacità di interpretare l'applicazione proposta;
  • la capacità di comunicare sinteticamente la natura e le proprietà degli strumenti utilizzati. 

 

La verifica dell’apprendimento prevede in presenza:

  • una prova scritta obbligatoria;
  • una prova orale obbligatoria.

La prova scritta è un test che comprende domande a risposta multipla e domande a risposta aperta. Tramite queste ultime, si chiederà di commentare i risultati di un'analisi condotta su uno o più casi studio e il codice R sviluppato per produrla, e di rispondere ad alcune domande teoriche riguardanti gli strumenti utilizzati durante l'insegnamento.

La prova orale verterà su gli stessi argomenti della prova scritta.

 
 
 

The exam, held in presence, is aimed at verifying:

  • the extensive knowledge of the course program of both modules of the main Data Mining and Multivariate Analysis course;
  • the ability to interpret the proposed application;
  • the ability to synthetically communicate the nature and properties of the tools used.

It consists of:

  • mandatory written test;
  • mandatory oral test.

The written part is a test consisting of multiple-choice questions and open questions. The latter include comments on the results and the R code used in one or more selected case studies, as well as theoretical questions about the tools used during the course. 

The oral exam will focus on the same topics as the written exam.

 

Testi consigliati e bibliografia

Oggetto:

Analisi dei dati e data mining per le decisioni aziendali 
Autori: Sergio Zani, Andrea Cerioli
Editore: Giuffrè
Data di Pubblicazione: 2007
EAN: 9788814204999
ISBN: 8814204993

Mining of Massive Datasets
Jure Leskovec, Anand Rajaraman, Jeff Ullman
ONLINE VERSION: http://www.mmds.org

 

An introduction to generalized linear models,Autori: Dobson A.J. and Barnett A.G., Edizione:Third 

http://www.ru.ac.bd/wp-content/uploads/sites/25/2019/03/202_06_Dobson_An-Introduction-to-Generalized-Linear-Models-2008.pdf

Analisi dei dati e data mining per le decisioni aziendali
Autori: Sergio Zani, Andrea Cerioli
Editore: Giuffrè
Data di Pubblicazione: 2007
EAN: 9788814204999
ISBN: 8814204993

Mining of Massive Datasets
Jure Leskovec, Anand Rajaraman, Jeff Ullman
ONLINE VERSION: http://www.mmds.org

 

 





Oggetto:

Note

Gli/le studenti/esse con DSA o disabilità, sono pregati/e di prendere visione delle modalità di supporto (https://www.unito.it/servizi/lo-studio/studenti-con-disabilita) e di accoglienza (https://www.unito.it/accoglienza-studenti-con-disabilita-e-dsa) di Ateneo, e in particolare delle procedure necessarie per il supporto in sede d’esame (https://www.unito.it/servizi/lo-studio/studenti-con-disabilita/supporto-
agli-studenti-con-disabilita-sostenere-gli-esami).

Oggetto:

Insegnamenti che mutuano questo insegnamento

Oggetto:

Altre informazioni

http://www.didattica-est.unito.it/do/home.pl/View?doc=home_appelli.html
Registrazione
  • Aperta
    Oggetto:
    Ultimo aggiornamento: 03/07/2024 10:37
    Non cliccare qui!