Vai al contenuto principale
Coronavirus: aggiornamenti per la comunità universitaria / Coronavirus: updates for UniTo Community
Oggetto:
Oggetto:

Modelli per dati longitudinali - (non attivo a.a. 2018-2019)

Oggetto:

Methods for longitudinal data

Oggetto:

Anno accademico 2018/2019

Codice dell'attività didattica
SCP0082
Corso di studi
Laurea magistrale in Scienze Statistiche, Economiche e Manageriali - a Torino [009504]
Anno
2° anno
Tipologia
Affine o integrativo
Crediti/Valenza
6
SSD dell'attività didattica
SECS-S/05 - statistica sociale
Modalità di erogazione
Tradizionale
Lingua di insegnamento
Italiano
Modalità di frequenza
Fortemente consigliata/Recommended
Tipologia d'esame
Scritto
Prerequisiti
Lo studente dovrebbe possedere conoscenze di livello intermedio di statistica inferenziale e di econometria.
Oggetto:

Sommario insegnamento

Oggetto:

Obiettivi formativi


L'obiettivo dell'insegnamento è di introdurre lo studente ai modelli per dati longitudinali (dati di durata e dati panel) in ambiti disciplinari diversi. 


Aim of the course is to introduce the students to longitudinal data modeling (duration data and panel data) in different contexts.

Oggetto:

Risultati dell'apprendimento attesi


Lo studente dovrà possedere una buona conoscenza degli argomenti trattati ed essere in grado di utilizzare consapevolmente gli strumenti acquisiti. In particolare, dovrà dimostrare di padroneggiare i fondamenti logici dei modelli per dati di durata (anche detti modelli di sopravvivenza), dei metodi di stima parametrici e semi-parametrici, dell’inclusioni di covariate che variano nel tempo, dei modelli con destinazioni multiple. Dovrà inoltre essere in grado di scrivere la verosimiglianza completa e parziale in svariati casi applicativi, per modelli in tempo continuo e discreto. Dovrà aver compreso i fondamenti logici dei modelli (statici) per dati panel quantitativi e binari, con particolare rifermento ai modelli a effetti fissi e random, e dei relativi stimatori. Lo studente dovrà inoltre aver acquisito la capacità di interpretare i risultati delle stime dei modelli trattati.



We expect students to acquire good knowledge of the topics covered in the course. Students should be aware of the rationale of duration models, parametric and semi-parametric estimation methods, of the inclusion of time-varying covariates, and multiple destination models. Students should be able to write full and partial likelihood functions in many applied contexts, for continuous and discrete time models. They should understand the rationale of static panel data models for quantitative and binary data, and of the fixed and random model estimators. Students should also have to competence to interpret the basic output of standard statistical packages.


Oggetto:

Modalità di insegnamento


Lezioni frontali, esercitazioni in aula, esercitazioni in aula informatica con dati reali e simulati.


Lectures, excercise sessions and  lab sessions on real and simulated data.


Oggetto:

Modalità di verifica dell'apprendimento


Verifica scritta al termine dell'insegnamento 3 esercizi semi-strutturati, comprendenti quesiti di carattere teorico, definizione della funzione di verosimiglianza in uno specifico contesto applicativo, e interpretazione di risultati di analisi svolte.


Written test at the end of the course with three semi-structured exercises.
Students will be asked questions on  the theoretical background, the  likelihood function for specific models and data, the intepretation of the results of statistical analyses.

Oggetto:

Programma

1) Analisi della sopravvivenza: 
Metodi parametrici e non-parametrici. 
Modello semi-parametrico di Cox e piecewise constant. 
Covariate variabili nel tempo.
Modello a rischi competitivi.
Modelli di durata per tempo discreto.

2) Modelli statici per l'analisi di dati panel  
Effetti fissi e effetti random e relativi stimatori
Modelli per dati panel binari

1) Survival analysis: 
Parametric and non-parametric methods 
Cox and piecewise constant models.
Time varying covariates.
Competiting risks model.
Duration models for discrete time data.

2) Static models for panel data  
Fixed and random effects
Panel data models for binary data

Testi consigliati e bibliografia

Oggetto:

Box-Steffensmeier, Jones "Event history modeling. A guide for social scientists", Cambridge University Press (ordinabile su Amazon)

Jenkins "Survival analysis", pdf scaricabile da https://www.iser.essex.ac.uk/files/teaching/stephenj/ec968/pdfs/ec968lnotesv6.pdf

Materiali preparati dalla docente (disponibili online)

Box-Steffensmeier, Jones "Event history modeling. A guide for social scientists", Cambridge University Press 

Jenkins "Survival analysis", downloadable pdf on https://www.iser.essex.ac.uk/files/teaching/stephenj/ec968/pdfs/ec968lnotesv6.pdf

Materials prepared by the teacher (available online)



Oggetto:

Note

Orario Lezioni

Oggetto:

Altre informazioni

http://www.didattica-est.unito.it/do/home.pl/View?doc=home_appelli.html
Oggetto:
Ultimo aggiornamento: 17/01/2019 15:25
Non cliccare qui!