Vai al contenuto principale
Coronavirus: aggiornamenti per la comunità universitaria / Coronavirus: updates for UniTo Community
Oggetto:
Oggetto:

Software R

Oggetto:

Software R

Oggetto:

Anno accademico 2022/2023

Codice attività didattica
SWEACT00
Docente
Giuseppe Pernagallo (Titolare del corso)
Corso di studio
Laurea magistrale in Economia dell'Ambiente, della Cultura e del Territorio - a Torino [0403M21]
Anno
1° anno, 2° anno
Periodo
Da definire
Tipologia
Altre attività
Crediti/Valenza
-
SSD attività didattica
SECS-S/01 - statistica
Erogazione
Tradizionale
Lingua
Italiano
Frequenza
Consigliata/Recommended
Tipologia esame
Prova pratica
Prerequisiti

Algebra lineare e statistica di base

Linear algebra and statistics

Oggetto:

Sommario insegnamento

Oggetto:

Obiettivi formativi

Questo corso mira ad introdurre la programmazione in R tramite l’uso dell’interfaccia RStudio. Verranno trattati concetti base della programmazione e in seguito applicazioni statistiche ed econometriche. Le ultime lezioni saranno dedicate ad argomenti avanzati di programmazione. Durante il corso verranno presentati casi studio ed esempi.

This will be an introductory course to learn programming in R using the interface RStudio. We will cover basics of programming and then we will see econometric and statistical applications. The last lessons will be devoted to advanced topics. Case studies and examples will be presented during this course.

Oggetto:

Risultati dell'apprendimento attesi

Gli studenti al termine del corso avranno una visione completa delle potenzialità di R per le analisi econometrico-statistiche e saranno in grado di usare tutte le funzioni di base. L’approfondimento di argomenti avanzati introdurrà lo studente alla scrittura di routine più complesse, quali simulazioni o data visualization avanzata, funzionali per insegnamenti successivi.

Students, by the end of the course, will have a complete vision of the advantages offered by R for econometric and statistical analysis, and they will be able to use all the basic functions. The presentation of advanced topics will introduce the student to complex routines, such as simulations or advanced data visualization, useful for successive courses.

Oggetto:

Programma

  • Topic 1: Concetti base

Introduzione alla programmazione; operazioni base; operazioni matematico-logiche; vettori; matrici, arrays e data frames; import/export dati in R.

  • Topic 2: Data visualization e data cleaning

Introduzione ai grafici basilari; export dei grafici; markdown files; grafici sovrapposti e stima kernel di densità; data visualization avanzata con ggplot; data cleaning.

  • Topic 3: Argomenti avanzati di programmazione

Loops (cicli); time complexity e parallel computing; nesting; funzioni; simulazioni di Monte Carlo; debugging (se rimane tempo).

  • Topic 4: Probabilità e statistica

Introduzione all'applicazione di strumenti statistici in R.

 

 

  • Topic 1: Basics of R

Basic operations; mathematical and logical operations; vectors; matrices and data frames; import/export data in R.

  • Topic 2: Data visualization and data cleaning

Introduction to basic plots; export plots; markdown files; overlapped plots and kernel density estimation; advanced data visualization with ggplot; data cleaning.

  • Topic 3: Probability and statistics

Set theory and probability; confidence intervals and statistical tests; regression models; introduction to time series analysis.

  • Topic 4: Advanced topics of programming

Loops; time complexity and parallel computing; nesting; functions; Monte Carlo simulations; debugging (if time permits).

 

Oggetto:

Modalità di insegnamento

La modalità didattica prevede l’utilizzo del computer per programmare in ambiente R. I codici presentati saranno adeguatamente commentati e forniti in anticipo per consentire agli studenti di riprodurre le esercitazioni.

The course will be delivered by means of computer to code in R. The presented codes will be adequately commented and provided to students before the lesson in order for them to reproduce the routines.

Oggetto:

Modalità di verifica dell'apprendimento

Alcune domande su programmazione in R verranno incluse nell'esame di Econometria (prof. Belloni). 

Il programma per prepararvi sulla parte di coding in R è quello del corso Software R. 

 

Questions on coding in R will be included in the exam of Econometrics (prof. Belloni). 

The syllabus for preparing the coding part is the syllabus of the course "Software R".  

Testi consigliati e bibliografia

Oggetto:

  • Materiale didattico disponibile su Moodle.
  • Libro: Heiss, F. (2016).Using R for Introductory Econometrics.
  • Letture di approfondimento:

1) James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013).  An Introduction to Statistical Learning with Applications in R, Springer Texts in Statistics.

2) Garrett, G. and Wickham, H. (2017). R for Data Science, O’Reilly Media.

  • Course notes available on Moodle.
  • Book: Heiss, F. (2016).Using R for Introductory Econometrics.
  • Suggested lectures:

1) James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013).  An Introduction to Statistical Learning with Applications in R, Springer Texts in Statistics.

2) Garrett, G. and Wickham, H. (2017). R for Data Science, O’Reilly Media.



Oggetto:

Note

Le lezioni sono erogate in presenza, utilizzando le aule fino alla loro capienza massima. Le modalità di svolgimento dell'attività didattica potranno subire variazioni in base alle limitazioni imposte dalla crisi sanitaria in corso. 

Classes are delivered in-person, using classrooms up to their maximum capacity. The way teaching activity is carried out may be subject to variations according to the evolution of the Covid-19 emergency. 

Registrazione
  • Aperta
    Apertura registrazione
    31/01/2022 alle ore 00:00
    Chiusura registrazione
    31/12/2022 alle ore 23:55
    Oggetto:
    Ultimo aggiornamento: 15/09/2022 18:54
    Non cliccare qui!