Vai al contenuto principale
Oggetto:
Oggetto:

Statistica Bayesiana

Oggetto:

Bayesian Statistics

Oggetto:

Anno accademico 2023/2024

Codice attività didattica
ECM0122
Docente
Alessandro Lanteri (Titolare del corso)
Corso di studio
Laurea magistrale in Metodi statistici ed economici per le decisioni - a Torino [0402M21]
Anno
2° anno
Periodo
Secondo semestre
Tipologia
Affine o integrativo
Crediti/Valenza
6
SSD attività didattica
SECS-S/01 - statistica
Erogazione
Mista
Lingua
Italiano
Frequenza
Consigliata/Recommended
Tipologia esame
Orale
Prerequisiti

Buona conoscenza del metodo di stima della massima verosimiglianza e dei ragionamenti inferenziali sottostanti alla prova delle ipotesi frequentista. Buona conoscenza dei modelli lineari e, in generale, buone basi di Matematica e di calcolo delle Probabilità.


Good knowledge of inference in the frequentist framework and the maximum likelihood estimator method. Good knowledge of linear models, foundamentals of math and probability theory.

Propedeutico a

Si consultino il Regolamento didattico e il Piano degli studi relativi al proprio anno di iscrizione a questo corso di laurea magistrale al seguente link: https://www.didattica-est.unito.it/do/home.pl/View?doc=Organizzazione/regolamenti.html


You can check the list of mandatory preparatory exam here: https://www.didattica-est.unito.it/do/home.pl/View?doc=Organizzazione/regolamenti.html
Oggetto:

Sommario insegnamento

Oggetto:

Obiettivi formativi

L'insegnamento è finalizzato a:

- arricchire gli strumenti analitici disponibili allo studente,

- arricchire la sua formazione critica,

- arricchire la capacità di comprendere  e applicare i metodi di statistical learning e data mining sempre più basati sull'approccio bayesiano alla statistica e sempre più apprezzati nel mondo del lavoro,

- arricchire le abilità richieste a futuri Data Analyst e Data Scientist da parte delle moderne aziende pubbliche e private. 

-

The course is aimed at:


- enriching the analytical tools available to students;


- enriching their critical vision of statistical inference;

- enriching their ability to understand and apply statistical learning and data mining methods, nowadays increasingly based on the Bayesian approach to statistical inference and increasingly appreciated in the job market.

- improving skills required to Data Analysts and Data Scientists by modern public and private companies. 

Oggetto:

Risultati dell'apprendimento attesi

Alla fine dell'insegnamento lo studente saprà:

- comparare gli approcci classico e bayesiano all'inferenza statistica, comprendere problemi aperti sia nei modelli statistici classici che bayesiani ed esplorare le limitazioni di risultati teorici consolidati nella statistica inferenziale;

-apprezzare i principali benefici dell'approccio bayesiano che consente di tener conto dell'incertezza in maniera migliore, di ottenere risultati dal significato più intuitivo e facile da interpretare e di rendere più esplicite tutte le assunzioni sottostanti alle analisi;

- leggere, comprendere e applicare le tecniche di base dell'inferenza Bayesiana;


- discutere e comunicare con linguaggio appropriato i risultati delle inferenze anzidette.

Students who complete this course will have the ability to:

-make comparisons between classical and Bayesian approaches to statistical inference,  understand open problems in both classical and Bayesian statistical models and explore  limitations of a series of well-established results in inferential statistics:

-appreciate some of the main benefits of the Bayesian approach, which allows for better accounting of uncertainty, results that have more intuitive and interpretable meaning, and more explicit statements of assumptions; 

 
- read, understand and apply basic Bayesian inferential methods;


- appropriately discuss and comunicate the results of the above mentioned Bayesian inferential methods.

Oggetto:

Programma

Temi trattati:
- logica induttiva bayesiana
- distribuzioni a priori
- funzione di verosimiglianza
- distribuzioni a posteriori
- stima puntuale e intervalli di credibilità
- prova delle ipotesi bayesiana
- criteri scelta del modello

Il programma è lo stesso per studenti frequenanti e non frequentanti.

List of topics:
- Bayesian approach to inference
- prior distributions
- likelihood function
- posterior distributions
- point estimation and credible intervals
- Bayesian hypothesis testing
- model choice

The list of topics is the same for both those students attending the lectures and those who do not.

Oggetto:

Modalità di insegnamento

lezioni frontali

frontal lectures

Oggetto:

Modalità di verifica dell'apprendimento

Esame orale comprendente problemi da risolvere e domande di carattere teorico. La valutazione avviene in trentesimi.

Oral exam consisting in a written test including exercises and theoretical questions. The exam score is evaluated over a range of 30 points.

Oggetto:

Attività di supporto

--

Testi consigliati e bibliografia



Oggetto:
Libro
Titolo:  
A first course in Bayesian Statistcal Methods
Anno pubblicazione:  
2009
Editore:  
Springer
Autore:  
Peter Hoff
Capitoli:  
1-6
Obbligatorio:  
Si


Oggetto:
Libro
Oggetto:

In aggiunta a:

-Peter D. Hoff, A first course in Bayesian Statistcal Methods, Springer

si veda anche:

-Jim Albert, Bayesian Computation with R, Springer

In addition to:

-Peter D. Hoff, A first course in Bayesian Statistcal Methods, Springer

see also:

-Jim Albert, Bayesian Computation with R, Springer



Oggetto:

Note

-Si raccomanda l'iscrizione al corso tramite il link a fondo pagina.

-Il programma è lo stesso per i frequentanti e per i non frequentanti le lezioni.

-Gli/le studenti/esse con DSA o disabilità, sono pregati/e di prendere visione delle modalità di supporto (https://www.unito.it/servizi/lo-studio/studenti-con-disabilita) e di accoglienza (https://www.unito.it/accoglienza-studenti-con-disabilita-e-dsa) di Ateneo, e in particolare delle procedure necessarie per il supporto in sede d’esame (https://www.unito.it/servizi/lo-studio/studenti-con-disabilita/supporto-
agli-studenti-con-disabilita-sostenere-gli-esami).

 

- Please subscribe to this class using the link below.

- The Exam program will be the same for attending and non-attending students.

- Students affected by Specific Learning Disorders (SLD) or disability are invited to read carefully the supporting tools (https://en.unito.it/services/students-special-needs-0) and facilities made available by the University of Turin (SLD: https://en.unito.it/services/students-special-needs/students-specific-learning-disability-sld/services-students-sld; disability: https://en.unito.it/services/students-special-needs/disabled-students/services-disabled-students), and, in particular, the procedures to follow in order to receive support for the exams (SLD: https://en.unito.it/services/students-special-needs/students-specific-learning-disability-sld/support-taking-exams; disability: https://en.unito.it/services/students-special-needs/disabled-students/support-taking-exams-disabled-students).   
Registrazione
  • Aperta
    Oggetto:
    Ultimo aggiornamento: 05/03/2024 12:10
    Location: https://www.didattica-est.unito.it/robots.html
    Non cliccare qui!